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Microscopic theory of intervailey scatlering in GaAs: k dependence
of deformation potentials and scattering rates
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Federal Republic of Germany
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The “rigid-pseudoion” model is applied to intervalley scattering processes in GaAs. The
intervalley deformation potentials (IDPs) that we cbtain at high-symmeiry points are in good
agreement with previous calculations. We find that the IDPs show a strong dependence on the
wave vector of the intervalley phonon, therefore a numerical integration over the Brillouin
zone {€.g., with the tetrahedron method) is necessary to obtain realistic scattering rates that
can be compared with those obtained from experiments. We calculate the lifetimes of electrons
at the L and X valleys as a function of temperature (L: 2.2 + 0.5 ps; X: 130 4- 20 fs at room
temperature) and discuss our results in comparison with recent nltrafast laser experiments and
Monte Carlo simulations. Finally, the IDPs show an anisotropy that might be important when

simulating electrical transport in hot-electron devices.

1. INTRODUCTION

Intervalley scattering {IVS) processes are important for
& large number of semiconductor phenomena: they have
been discussed as a possible mechanism of superconductivity
in semiconducting’ and metallic® phases of Si and Ge. The
indirect absorption in Ge, Si, GaP,* AlSb,* or AlAs, or in
GaAs or GaSb under pressure’ is assisted by intervalley
phonons. In electrical measurements, electrons may display
a negative differential resistance due to scattering to a vallev
with a different mass, which may lead to a peak in the drift
velocity versus field carve®™’ and to microwave oscillations
(Gunn effect).® VS also has to be considered when study-
ing ballistic transport in hot-electron transistors>'° or diffu-
sion of hot carriers under high electric fields.”’ For low car-
rier concentrations and medium electron energies (below
the fundamental gap, where impact ionization'? is not possi-
ble), IVS seems to be the dominant'’ energy loss mechanism
{see Refs. 14 and 15 for the influence of carrier-carrier scat-
tering at higher carrier densities }. Recently, much attention
has been paid to the initial relaxation of electrons after
-pulsed or cw optical excitation, where intervalley scattering
processes are also important. Here, the carriers are probed
with time-resolved luminescence,’® Raman scattering,'’
time-resolved photoemission,’® hot-electron lumines-
cence,'*?! four-wave mixing,? far-infrared frequency mix-
ing,> or induced transmission’*> measurements. Finally,
the temperature shifts (broadenings) of band gaps®*?®’ are
mainly”® due to virtual (real) intervalley transitions, that
can be treated with the same formalism as the real transitions
responsible for the Gunn effect.
Let us consider an electron with wave vector k and ener-
gy E, in the lowest conduction band (band index n) of a
semiconductor with E,. < E; < E, conduction-band order-
ing,” e.g., in GaAs. Even in a pure crystal the mobility of the
electron is limited, because it can collide with the lattice and
absorb or emit a phonon with wave vector g, mode j, and
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energy (I, ; (see Fig. 1). The scattered electron will have a
wave vector k' = k 4+ q + G, where G is a reciprocal lattice
vector. By convention, we choose G such that g is within the
first Brillouin zone (BZ). G may not be unique if g is on the
surface of the BZ. The plus sign stands for absorption, the
minus sign for emission of 2 phonon. A scattering process
with nonzero G is called umklapp process, otherwise it is
termed a normal process. If g is small {to be specific, if
l9{<0.2(27/a)}, which is about cne third of the distance be-
tween I" and L in the Briliouin zone when ¢ is the lattice
constant], the interaction is called an intravalley scattering
process which we will not consider here, as long-range forces
(Frohlich interaction) are alsc important in ionic sernicon-
ductors and cannot be neglected. If g is large, however, long-
range forces are negligible. The scattered electron will find
itseif in a different equivalent or noneguivalent valley. Such
intervalley scattering processes are the subject of this study.

Ly

o
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mh g+ G, E gt 0g Np¥Fl

FIG. 1. An electron with wave vector k, band index #, and energy £, inter-
acts with the lattice and absorbs or emits a phonon with wave vector g, mode
J, and energy {3, .. The initial and final electron bands are assumed to be the
same. The reciprocal lattice vector G is chosen such that g is within the first
BZ. The number of phonons N, ; in the system is changed by 1. The lower
sign stands for emission, the upper sign for absorption of a phonon.
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In the past ten years, our group has been concerned with
the systematic determination of the dependence of band gaps
and broadenings on temperature.’® The microscopic theory
developed to describe such processes®” (“rigid-pseudoion”
model) can easily be applied to other intervalley scattering
processes. It is the purpose of this work to close the gap
between our previous calcuiations and recent intervalley
scattering experiments. We will follow the notation used
previously as closely as possible and present the microscopic
theory for intervalley scattering processes in Sec. I1. We de-
fine the intervalley deformation potentials (IDPs) common-
Iy used to interpret experiments in Sec. 111, develop a scheme
for calculating these deformation potentials, and present the
results for IDPs between high-symmetry points. In Sec. IV
we study the dependencies of these IDPs on the phonon
wave vector. In Sec. V we show how these k-dependent ma-
trix elements can be integrated over the Brillouin zone to
yield the temperature-independent intervaliey phonon spec-
tral function, from which the intervalley scattering rates can
be obtained. In Sec. VI we describe the numerical procedure,
present the results for lifetimes of electrons at the L and X
point in GaAs as a function of temperature and compare
these results with those obtained from recent ultrafast laser
experiments. Finally, we summarize the results in Sec. VIIL

There have been a few previous efforts to calculate
IDPs: Cohen’s group® introduced the “‘rigid-pseudoion”
model to calculate IDPs for IV-VI semiconductors in order
to explain the superconductivity observed in these com-
pounds. The model was later used for silicon®*** and germa-
nium.” Herbert performed the first calculation®® of IDPs
for zine-blende semiconductors with a similar method. Re-
cently, self-consistent pseudopotential calculations®”** and
an empirical tight-binding approach™ were employed.
None of these calculations, however, perform a detailed ex-
amination of the k dependence of the IDPs necessary to cal-
culate realistic energy-dependent scattering rates.** De-
tailed calculations of electron-phonon scatiering demand at
least a gualitative knowledge of the dependence of the IDP
on k. Processes are sometimes included which are forbidden
at high symmetry points (e.g., k = 0) by invoking that they
become allowed for k£0. This can only be justified by a
detailed analysis of the dependence of [DPs on k.

The scattering times that we calculate in this work are
for the imit of very low carrier densities. At higher densities,
carrier-carrier scattering will change these rates, as final
states may be occupied, in which case the Pauli principle will
reduce the scattering rates. Therefore, the rates are density
and even time dependent. Monte Carlo'™'® simulations will
be necessary to compare the rates caiculated from the micro-
scopic theory (this work) with realistic experimental situa-
tions.

it MICROSCOPIC THEORY

The rate 1/7,; for the intervalley scattering process
from a given valley as shown in Fig. 1 is given,*' to lowest
order, by Fermi’s “golden rule”*>**;
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In this expression, H,,_,, is the electron-phonon interaction
Hamiltonian to be discussed below. E,, and E, s are the
electron energies before and after the scattering, respective-
ly. In 2 first-order absorption process, the number of phon-
ons N, ; in the system is decreased by one, while in an emis-
sion process it is increased by one. In thermal equilibrium
with a lattice at ternperature 7', the phonon occupation num-
ber at a phonon energy {1, ; is given by Bose—Einstein statis-
tics

Ny, = [exp(Q;/kz Ty — 117, (2)

where kp is the Boltzmann constant and j is the phonen
branch index. In GaAs the band indices for the initial and
scattered electron wiil be the same [unless the energies are
extremely high, more than about 800 meV above the conduc-
tion-band (CB) edge]. We therefore use the same band in-
dex » for the initial and final electron states in Eq. (1) and in
the forthcoming expressions in order to keep the notation
simple. Sometimes processes with differerent band indices
have to be considered, for example, in GaP, where an elec-
tror at I {(I",) may be scattered {o the band at X with sym-
metry X, (same band) or X, (different* band). The exten-
sion of the notation to this case is straightforward.

In order to calculate the matrix element in Eq. (1), one
has to know the electron and phonon staies and their interac-
tion Hamilttonian. The phonon energies (3 ; have been mea-
sured with inelastic neutron scattering and are well known.
Their dispersion can be calculated® with various semiem-
pirical models (shell models,***’ bond charge model,*®
etc.) or ab initio methods.***° The phonon eigenvectors also
enter into the calculation. In principle, they are obtained by
the models used, but the accuracy of these is question-
able.’*? (In Ref. 53 it was shown that seven different
phonon models given seven very different sets of eigenvec-
tors for the phonons at X and L in GaAs.} From the few
experimental eigenvectors, derived at certzin symmetry
points for GaAs (Ref. 51) and $,>* and by comparison with
ab initio calculations*®3**>* reasonable models can be cho-
sen. The electronic energies and wave functions are cbtained
from band-structure calculations. In this work we use the
empirical pseudopotential method®”"® (EPM) with a cutoff
of about 5-7 Ry, corresponding o a basis set of 59-89 plane
waves. The electron energies do not enter into the calcula-
tion of the matrix element, but are contained in the argument
of the § function. This justifies the work of Ref. 59, where the
deformation potentials for non-energy-conserving processes
between high-symmetry points are calculated.”®® These
deformation potentials contribute to the real and imaginary
parts of the self-energy of electronic states.®’

The Hamiltonian for the interaction between the elec-
tron and the phonons is obtained from the electron-ion po-
tential.*® By  Taylor-expanding  this  potential

V_(r — R,, —u,,) of an electron at position r in the field of
one ion of type @ with basis vector v, in the unit cell at i that
is currently displaced from its equilibrium positicn E,
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=} 4 r, by a phonon displacement u,,, we find the elec-
tron-phonon interaction Hamiltonian to lowest order in
phonon displacement®>%:

Hi = —Zuk;grad Va(r_Rla)' (3)
fex

It is obvious that the interaction Hamiltonian does not act on
the spin variables in this approximation. This has to be borne
in mind when calculating scattering rates: the expression in
Eq. (1) hastobe integrated over ali final states with the same
spin as the initia state.

When calculating the matrix element entering the
“golden rule” {Eq. (1)] using the interaction Hamiltonian
of Eg. (3), we Fourier-transform the phonon displacement
i, of the ion a to the normal mode representation.®’

7 +
= O, J
Wy, % f INH T (@gs + a2 o, )e(Qla)

X exp(iR,, Q). (4)

Here ¥ is the number of primitive cells, M, the mass of an
atom of type & (i.e., anion or cation), and €(QJa) is the
normalized branch J phonon eigenvector of atom a. If we let
the creation and annihilation operatorsa ', and g, acton
the state |V, ;) and use Bloch’s theorem in the form™
<n7k + Q:grad F/a (r - Rla ) ’,n’k>

=exp{ — gy (nk + glgrad ¥, (r — 7,0 |nk), (5)
we find the only nonzero matrix elements
<n$k i q’qu :{: 1 iHlin’k’NCIj)

ﬁ2
= DA A k’na + 174
= 2.9, tom £ a.a)

e £ g N, +1F L (6)
where
Alk,n,q0)
= — (nk + glgrad V' {r — 7, ) {nK)exp(it, q). (7)

In order to calculate the vector A, we need to know the
electron states and the gradient of the potential. This can be
achieved by expanding the electron states into plane waves
normalized over the primitive cell with volume ¥;:

i .
Ink) = —— > Cy (Gexplilk + G)rl (8)
. o (4]
and Fourier-transforming the Cohen-Bergstresser® ionic
potential (normalized” to the atomic volume ¥,/2)

V. (g) =——2;— d’r V, (r)exp( — igr), %

0

which yields the potential in real space

V1) =— SV, (®)explign). (10)
8

The sum in Eq. (8) runs over all reciprocal lattice vectors G,
that in Eq. (10), however, over the quasicontinuum of all
vectors g in reciprocal space, as the {onic potential V,, (¢) is
not periodic in the lattice.
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After the plane-wave expansion of the electronic states
and the ionic potential of Eq. (10) it is easy to calculate the
gradient of the potential and to evaluate the matrix element
defined in Eq. (6). The final result is*

Aknga)
- __é. T ¥ (GNCL (GG — G+ q)
GG

XV G — G+ glexp] — (G —-G)r, ] (1D

We approximate the crystal potential F{g) in Eq. {11}
with an interpolation of the pseudopotential form factors
used in the band-structure calculation in a similar fashion as
in Ref. 31. Sham®® has shown that the use of a pseudopoten-
tial and pseudo-wave functions gives the same results when
calculating electron-phonon matrix elements as the use of
the real potential and real wave functions. This implies that
¥, (]g}) hastobe known as a continuous function of g = |g|
from g = 0 to a typical cutoff of about g = 8w/a, not just for
the few reciprocal lattice vectors needed to calculate the
band structure. The major drawback of the empirical pseu-
dopotential method is, however, that the form factors are i1l
defined for small and large wave vectors g. For small g, two
somewhat arbitrary exptrapolations have been used: (i)
screened ion limit for metals {our choice), which is similar
to the Heine-Abarenkov—-Animslu model potential,®® and
(11} extrapolation to V=0 for g=0 (Bednarek and
Réssler).* The smallest value of ¢ needed in the calculation
is g = |g|, which is quite large, as we are mainly concerned
with zone-boundary phonons. The other problem is whether
or not one should cut off the pseudopotential at a certain g

value (e.g., g = 11*27/a). We agree with Bednarek and
Rossler™ that the uncertainty in the electron-phonon ma-
trix elements for the conduction band of silicon is about 20~
30% for different extrapolations with the exception of the
LA mode, for which the disagreement is larger. Unfortu-
nately, there are no experimental data for this mode. For
GaAs, the difference between the two extrapelations is also
about 20%, but the same uncertainty appears when using
different sets of pseudopotential form factors ¥, (G), e.g.,
from Refs. 57 and 58. In this work, we always choose the
screened-ion limit and set our form factors to Zero for

g>11%27/a. The same sets of form factors were used for
the calculation of the band energies and the electron-phonon
matrix elements of Eq. (5). The results thus obtained agree
reasonably with experiments.*’

These results can be used to calculate the intervalley
scattering time defined in Eq. {(1). We obtain

i el A {Nq ; for absorption

T—q; ] N,;, N, +1 foremission, (i2)
where the electron-phonon coefficient
I #ar 2
—_— M TPAKN, + qa)el + gja)
N, NG, g _ + ga)e( + gf
XOE g =80 — Eu) (13}

is a special case of that in Refs. 70 and 31 and has the dimen-
sions of an energy. It should not change by more than 10%
between O and 400 K, as the phonon freguencies and band
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energies depend only weakly on temperature. Therefore,
most of the temperature dependence of the scattering time is
contained in the phonon occupation factors N, ;. In Eq. (13)
the plus sign stands for phonon absorption, whereas the mi-
nus sign stands for phonon emission. The sum runs over the
atoms of the basis.

fil. DEFORMATION POTENTIALS

The electron-phonon matrix elements introduced in Eq.
(1) and experimental intervalley scatiering rates for the con-
duction band (band index n) are often expressed in terms of
the intervalley deformation potentials D. These are defined
in the literature®®*+4>7173 54

i(k if Qquj I liHel»ph ]k9qu>}

= "‘"“ﬁj““" D(Q»jzk)
ZVPQU

where ¥ and p are the volume and the density of the crystal.
This reduces to Conwell’s approximation’® for the interval-
ley scattering time for a carrier with energy £ to a set of
equivalent final valleys (&, is the number of such valleys)
with mass m when D is assumed to be independent of the
phonon mode (g/) and the rate in Eq. (1) is just summed
over all g states allowed by the conservation of energy and
spin. This is equivalent to multiplying the rate in Eq. (1)
with the density of final states at energy F and with the same
spin:

g(EYV = (N, m**VE }y/ (J2r2#). (15

Sometimes”' I, K or the g-dependent formulation™ g&
are used instead of D, but this is just a matter of notation.
There is another more serious ambiguity, however, in the
definition of D. Obvicusly the mass of the crystal ¥p equals
NBM with N being the number of primitive cells, if
M = M, + M, is the total mass in the primitive cell. This
may seem awkward for the case of germanium or silicon, as

Ny #1575 (14)

M has to be chosen to be twice the atomic mass, but it is the
only definition consistent with that in the older literature,”’
which arose as a generalization of the expression for long
wavelength acoustic phonons (hence g). Cohen’s group has
used the more natural convention M = (M, + 54,)/2 in
their calculation of intervalley deformation potentials for si-
licor®” and some IV-VI compounds®® with rocksalt struc-
ture. The mentioned ambiguity arises from the attempt to
write the matrix element as”™ [{H, . }|* = D4, u being
2 mean-squared vibrational amplitude

ul, = (B/2NMQ (N, + 1+ 1) {(16)

For a monatomic lattice, there is only one natural choice for
M, i.e., the atomic mass. In the zinc-blende structure, how-
ever, three possible choices are in use; for an optical phonon
at q = 0, the reduced mass is the natural choice.” The Con-
well notation uses the mass of the primitive cell
M= M, + M,, but Cohen’s notation (M is the mean mass)
is equally aitractive, as it reduces to the atomic mass for the
diamond structure. We adopt the Conwell notation of
M= M, + M, in all calculations in this work.

The intervalley deformation potential D{q j k) for the
conduction band, as defined in Eq. (14), depends on the
initial state k and on the intervalley phonon wave vector g
and mode j. Just like the electron-phonon coeflicient in Eq.
(13), the deformation potential is almost temperature inde-
pendent. By comparison of Egs. (14) and {6) we obtain
Dig gy =VM | ¥ Alkngqa)-e(gjo)M ;" (17

In Ref. 59 we had presented the calculated values of
such deformation potentials for scattering between the three

- valleysat I, X, and L in the lowest conduction bands of eight

zinc-blende semiconductors. Drue to an inconsistency of con-
vention, the values given there are too high by a factor of 2.
We therefore list the corrected values for the intervalley de-
formation potentials in Table [ and compare with other cal-

TABLE 1. Caleulated intervailey deformation potentials in units of eV/A {corrected version of Table I in Ref. 59).

Dr, Dpy, D, Py Dy %, DLX(
Material LA LO LA 4+ LO° LA/LOY LA/LOS LA 4 LO* LA/LOY  TAd LA LG T
Ge This work 2.8 0 2.8 2.4 3.0 0.3 3.7 0.5 4.5 2.5 1.6
Ge Refs. 33,3 5.3 0 5.3
Ge This work® 1.2 ¢ 1.2 0.5 2.8 0.7 2.0 0.5 0.4 1.2 1.4
GaP This work 0.8 0.7 1.1 . Q.8 0.6 3.0 0.4 Q.7 1.6 0.7
GaAs  This work 30 0.4 3.0 23 33 1.2 49 0.8 0.4 1.8 1.8
GaAs  Ref. 39 2.1 2.4 32
GaAs  Ref 36 3.4 . 4.4,5.5
InP Ref. 36 2.9 2.6
inP Ref. 39 2.8
Ian This wor‘I-(u 1.4 i.8 2.3 1.6 2.6 0.9 31 Q.7 0.5 2.8 1.2
InAs Ref. 39 2.8
InAs This work 1.7 1.0 20 2.2 2.0 1.1 2.5 0.6 3.6 1.9 1.1

*When adding scattering contributions, the squares of the IDPs have to be added, i.e, D}, o = D%, + Di,.

® For the zinc-blende structure, the X, phonon is allowed (either LA or LQ, anion at the origin }. For diamend, the X, phonon is doubly degenerate and can be
taken half even and half odd (Ref, 62). The even mode is allowed, the odd mode is forbidden.

¢ The X,-phonon is aliowed for the zinc-blende structure (either LA or LO).

9 The transverse phonons are doubly degenerate at the X point. The intervalley deformation potentials are for each of the two phonons.

¢ Extrapolation according to Ref. 34.
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culations. Experimental data for the different deformation
potentials scatter between [ and 10 eV/A,75 but the evalua-
tion of the IDPs from experiments is usually difficult and
controversial, see the recent review in Ref. 76. Our results for
silicon differ from those of Glembocki and Pollak® by a
factor of 2, which may be due to an inconsistency in their
normalization of the pseudopotential form factors [see Eq.
1]

¥ one assumes that the intervalley deformation poten-
tial and the phonon energy do not change in the vicinity of a
band minimum at [, L, or X, then Eq. (1) can be integrated

L inkt. point : k=(,0,0) TA+iaTO+ 10 {a) .
final point : L & B A @ R

D in 10% eV/cm

0.00 .05 0.10C
ikl in 2m/a
- . point : k=(z,5,8) TA+uzTo+Eng(b)
S ttnat point ¢ L @ @ .8 } “
" LAt LOY 00"
T 5 e °o°° -l
L f,f' a°° |
- e
4 .._ » @eoo i
P Doo I
- 3 -
N
LAT+L01 +LA24+L024
Pﬂcanuuunnnauﬂﬂt‘ﬂaagng
T~ 7
\mﬂoz )
0.00 0.05 0.10
Kk in 2n/a
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over all possible final states to give an average intervalley
scattering time for an isotropic { parabolic or nonparabelic)
final valley, as described by Conwell”’ and other authors.*
These scattering rates can be used as input for Monte Carlo
simulations of electrical or optical measurements. In this
work, however, we shalil use a different approach. First we
show that the deformation potentials exhibit a considerable
dependence on the phonon wave vector g. Then we perform
an explicit integration in g space with the tetrahedron meth-
od for a special case, in order to obtain the averaged scatter-
ing rate.

L Init. point : k=(s,,0) TAZLA2TO2L02 (c) .
fingl point : L ¢ B & e

LAY LOTTA+TO+
4& 5 e o+ x e TATHLOT

< xx

0.15

.10
ki in 27/a

FIG. 2. Intervalley deformation potentials in GaAs for scattering from
symmetry points in the [ valley to the L point. The pseudopotentials were
interpolated from the values of Ref. 58, the phonons were calculated (see
Ref. 45) with the ten-parameter overlap valence shell model of Ref. 46. (a)
Scattering from k = (0,0}, (b) from (g€6), (¢) from (€6,0). The
phonon symmetry modes and symbols not explained in the figures are dis-
cussed in the text. The vertical line shows the onset of real (energy-conserv-
ing) transitions. The deformation potentials for the slow TA and lower TO
modes are not shown as they are very small. The discontinuities in the
curves are due to the cutoff of the pscudopotential form factors for large
wave vectors.
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. k-DEPENDENCE OF INTERVALLEY DEFORMATION
POTENTIALS

In Figs. 2 and 3 we show the deformation potentials in
(aAs for scattering from points along {a) [ 100], (b) [111],
and {c} [110] symmetry lines near the [ pointtothe Lor X
points, respectively. { More precisely: from a point near T to
points in the stars " L or " X). Along high-symmetry direc-
tions the phonon modes are slow {or lower) TA,, fast (or
upper} TA,, LA, LO, lower TO,, and upper TO,,. This no-
tation is very intuitive, but not exact in off-symmetry direc-
tions as there is a considerable mixing between longitudinal
and transverse phonons, especially between the longitudinal

L init. potnt @ k=(£,0,0) TA+TO+L02  (a)
4 - fina! point : X & & @ -
1L01
i_ LATL 4e®
g oe R
" v 0EY 338%5.6 GEEY
o 00 i
£ -
[&]
~. 1
3 LAT+LOT+L02 -
)
< L]
- 2 * ®e A.u&““ —
®
.E P @ AA-Q%Xéege 4
@ ob e, B
[ I @ a® ®
o . 2t fee, |
P & Pe
Th o at 2
. & &AA .
aj
b QAA cﬂgsncﬁﬂnnan
% nanﬂnu i
dnzsaﬂnﬂnunaaulﬂ“na ¢

0.G5 0.10
ki in 2m/a

0.0C

L init. point : k=(e.e,8) TA+ LATO+10 (b} |
final peint : X 6 8 & =&

— LA+LO b

- @ &

L @ a® sLn“’ -
¢ 2 2%

& B®

- g

| B anaanss®

0.00

0.05 0.10
Kl in 2n/a
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and upper transverse ones. Table I shows the symmetries
and selection rules of the intervalley phonons in the different
directions. The upper two rows apply to this work (initial
points in the stars " L and ” X}, the third row (initial point T,
final point near X} is useful for the interpretation of Fig. 1 in
Ref. 26.

First we discuss the scattering between " £ and a point
k = (€,0,0) with € small and positive. From now on, we state
all coordinates in the Brillonin zone in multiples of 2n/a.
There are four umklapp and four normal processes possible,
all having phonon wave vectors of the type g = (x,z,z) and a

fength of |gf = 1y3 — 4¢, when the terms quadratic in € are

4 i

L inlt. peint : k=(e,£,0) TA+LATTO+L01 (¢}
final polnt b4 % =B & &
TAs LOZ TAf TOu

G.05 C.10
ki in 2r/a

FIG. 3. As Fig. 2, but for the X point. The 14-parameter shell model of Ref.
47 was used in the calculation.
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TABLE I1. Symmetries for intervalley phonons in (100), (111), and (110} directions. The first two columns give the initial and final electron wave vectors,
the third and forth colemn the coordinates of the intervalley phonon and the square of its length to first order in € (in units of 27/¢, where ¢ is the lattice
constant). The column labelled “WNo.” lists the total number of equivalent intervalley phonons with the same type of wave vector, the next column (U} only
the wmklapp processes. § means that the phoron wave veetor is on the surface of the Brillouin zone, in which case normal and umklapp processes are the same.
The last three columns give the symmetry of the intervalley phonon and the selection rules. C, stands for a reflection plane in the zincblende point group,
C,{ 8, ) for a plane in the diamond group. (This symmetry is broken here by the lack of inversion symmetry, hence the selection rules are not exact.) Aand A
are the standard directions in the Brillouin zone. The first two wide rows (final points L and X) are refevant for the Figs. 2 and 3 of this work; the third row is

useful when reading Fig. 1 of Ref. 26.

Final point Initial point Phonon Length
k, k; q lal? Mo. U Symumetry Allowed Forbidden
*L (0,0} (- el (3 --4e)/4 8 4 <, TA"' LA TO" ,LO TA™ TGO
{€,6,€) (U—egl—¢i—¢) (3~ 12¢)/4 2 1 A LA, LO TATO
G+ &b — 65— ) (3- de)d 6 3 G TA ' LATOY 1O  TA ,TO"
(,60) h—&i—e (3 - 8e)/4 4 2 <, TA " LA TO" ,TC TA -, TO™
G—el+el) 3/4 4 S none all none
X (80,0} (1 —-¢00) i—2¢ 2 1 A LALO TA,TO
(1Le0 i 4 g C,(0,) TA "~ LATO* LO  TA ,TO-
(€,6,€) (1~ ¢gee€) I.-2e 6 3 C, Ta' LATOY LO TA ,TO
(&0 (Lee€) 1 2 S C, TA " LATO" LO TA TG
(1 ~e&0) 1--2¢ 4 2 C(8y) TA™ ,LATO™ LO TA TG
Initial point Final point
k; B,
r X + (0,0} (1-¢0,0) 1--2¢ 2 1 A LALO TA,TO
(1,0) 1 4 s C,(0,) TA " LATO™ LO TA ,TO
X + * (e} (1 — &6€) I —2¢ 8 4 C, TA* LALO* TO TA ) TO -
X + *{g,el) (1 —¢0,0) 1--2¢ 8 4 Co(0,) TA' LATO™ LO TA™ TO"
{l.ee) i 4 8 C, TAT LATC' ,LO TA [TO-
I L 4+ *(&0,0) (i &) (3--4e)/4 & 3 C, TA " LA LO, TO! TA ,TO
L ++ece)  (-6&i-el—e)  (3--12e)/d 2 1 A LALO TA,TO
(1 &) — 61+ €) (3. 4e)/4 6 3 c, TA*,LATO' ,LO  TA",TO
L+ +(660) (6} — &l (3 — 8e)/4 6 3 c, TA® LATO' LO TA ,TO-
4—el+el) 3/4 6 S none all none

neglected. The calculation shows that they all have the same
deformation potentials. Here the slow TA and lower TO
modes are odd with respect to the interchanging of two z
coordinates (reflection in a plane) and therefore completely
transverse. The other phonon modes are even with respect to
that reflection and have mixed longitudinal and transverse
character. As the electronic states in the lowest conduction
band are even, only the even phonon modes contribute to
intervalley scattering. It can be seen that the IDP of the LA
mode [& in Fig. 2(a)] rapidly decreases as |k| increases,
whereas the LO (@) contribution increases. This fact de-
serves some discussion: in germanium, where we have inver-
sion symmetry, the LO phonon (L ;' symmetry in the dia-
mond structure) cannot contribute to intervalley scattering
between I' (V7Y and L (L |* }, whereas LA phonon (L ; )
scattering is allowed. In GaAs or InSb this symmetry is
broken only weakly: there should be some memory of the
inversion symmetry of germanium. Therefore, one would
expect the LA deformation potential to be larger than the
LO IDP for small values of k, which is found in our calcula-
tions and in those for InP by Fawcett and Herbert.*® It is
important 1o note that the sum of the two processes [i.e.,
VDA(LA) 4+ D*(LO) 1, given by the line in Fig. 2(a), stays
approximately constant. This sum is only meaningful if the
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phonon energies of the LA and LO modes are about the
same, which is roughly the case in GaAs. Ascan be expected,
the two mainly transverse modes TA " (&) and TO ™' {(4)
gain importance as € increases {see also Ref. 36). The impor-
tance of T A phonons has been observed in hot-electron lumi-
nescence experiments.”’

In Fig. 2(b) we show the results of a similar calculation
for scattering between *L and a point k = (g,¢6,€), withe > 0.
Here we have to distinguish between two cases: (i) for scat-
tering from (0.5, 0.5, 0.5) or { — 0.5, — 0.5, —0.5)tok
{with g along the (111) direction, || = 13 — 12¢] the
same symmetry rules as for scattering to the I point apply,
and transverse phonons do not contribute. The IDPs for the
longitudinal phonons, LA, ({3) and LO, (O}, are given by
the open symbols, their sum by the dotted line. Discontinui-
ties in the curves are due to the cutoff of the pseudopotential
form factors at 2m/11/a, as discussed above. (it) The sym-
metry modes for scattering from the other six L points
(across the zone, with |g| = 1y3 — 4€) are TA™* (§), LA,
(B), TO ' (4),and LO,(®), with (slow) TA  and (low-
er} TO ™ being forbidden {by parity, with respect to reflec-
tion in a {011) or equivalent plane, see Table If]. The IDPs
for these modes are given by the closed symbols in Fig. 2(b).
The sum of the LA, and LO, contributions is given by the
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dashed line. The [DP for all longitudinal processes (i) and
{ii), averaged over the star of £, is given by the solid line in
Fig. 2(b}, and it is approximately constant. This figure
shows clearly that intervalley scattering is an anisotropic
process, a fact which has to be taken into account in electri-
cal transport measurements. Scattering processes with the
same phonon wave vector contributing to different points in
the same star have different IDPs [compare the open and
closed cireles in Fig. 2(b)].

The situation is more complicated for scattering be-
tween L and k = (¢,6,0);  see Fig. 2{c}. (i) There are four
processes with |g| = 2\3 — 8¢, where LA, (1), LO, (O),
TAT {4+, and TCGT (X)) are allowed and TA ™~ and
TO ~ are forbidden. The sum of the LA | and LO, processes
is given by the dotted line. (ii) For scattering {from the other
four L points, with |g] = %-\/5, the symmetry restrictions are
relaxed. Therefore, the lower TA, and TO, modes give
small, but nearly negligible contributions (2 <0.2 evV/A).
The main processes are LA, (B), LO, (&) (mainly longitu-
dinal), fast TA, (&), and upper TO, (4 ). Thesum of LA,
and LO, is given by the dashed line {almost hidden by the B
symbols in Fig. 2(c¢} ], the average of all longitudinal pro-
cesses under (1) and (ii) by the fuil line.

We summarize these results for LT scattering as fol-
lows: the total intervalley deformation potential for longitu-
dinal LT scattering is about 3 eV /A and almost independent
of k, when averaged over the star of L. The lower/slow
transverse modes do not contribute to intervalley scattering,
whereas the upper/fast modes contribute away from the cen-
ter of the zone. Our calculation gives values for the latter of
about 1 eV/A for lk| = 0.07, which is the k vector for the
onset of LI scattering. The IDPs for wmilapp and normal
processes are identical; the relevant quantity seems to be the
length |g! of the phonon wave vector.

We now proceed to discuss the scattering from one of
the X points, beginning with the [100] direction. (i} For
scattering to k = (€,0,0), there are two processes with
lgl = 1 — ¢, the corresponding symmetries being 4, (LA
and LO) and A; (TA and TO) (see Table IT). For symmetry
reasons, TA and TO scattering is forbidden, whereas LA
(O and LO, (O} are allowed. The calculation shows that
LO, gives the main contribution, whereas the LA, IDP is
small {see Fig. 3{a)]. The sum of the LA, and LG, pro-
cesses is given by the dotted line. (i1} The other four pro-
cesses have || = 1. The TA~ and TC - modes are not al-
lowed for intervalley scattering in the diamond structure.
The calculation shows that their IDPs are nearly zero for
Gahs also. The LA, IDP also turns out to be small. The
IDPsfor TA™ (), LG, (8),and TO " (&) aregiven in
Fig. 3(a}. It is worth noting that the TA " contribution is
very large. This may explain the high rate for I X compared
to I'L scattering. The sun: of ali longitudinal processes, aver-
aged over the star of X, is given by the full line. It slightly
decreases with increasing |k|, in good agreement with the
overlap factor theory of Ref. 72.

The next caseis scattering from a point in the star of X to
k = (¢,6,€). Naturally, all six processes have |g] =1 — ¢,
with TA~ and TO - forbidden, and TA " (4), LA (8),
TO™ I, (&) and LO (8) givenin Fig. 3(b). The sum of all
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longitudinal processes (LA and LO), given by the full line,
slightly decreases away from the zone center. For scaitering
to a point {€,6,0), there are two processes with |g] = 1. The
IDPsforTA™ (&), LA, (8), TO' (4),2nd L0, (8) are
given in Fig. 3{c}; the lower TA~ and TO~ modes are
forbidden. The sum of LA, and LO, is given by the dotted
line. For scattering from the other four X points, with
lg| = I — ¢, the contributions of the LA, aud lower TO
modes are smail; those of slow TA, (00), fast TA, ( + ),
upper TO, (X}, and LG, (O) are given in Fig. 3(c¢). The
sum of ail longitudinal processes (averaged over the star of
X}, given by the full line, slightly decreases.

We now summarize the main features of the k depend-
ence of the intervalley deformation potentials for scattering
from the L or X point to a point k in the T valley: (i) the total
IDP for longitudinal phonons, when averaged over the star
of L or X, is a nearly isotropic function of k. It slightly de-
creases with increasing k| for XT scattering and stays al-
most constant for LT scattering. This average is about the
same for scattering from L and X. (ii) Nevertheless, inter-
valley scattering is highly anisotropic. Intervalley deforma-
tion potentials for scattering processes from the same k point
to different points in the same star may be different by almost
an order of magnitude. (iliy) Cut of the four transverse
phonon modes, the lower two modes can usually be neglect-
ed, whereas the upper two modes should always be taken
into account. The fast TA, mode for XT scattering has a
particularly high IDP. This may explain why UX scattering
is seen to be stronger in experiments than 'L scatiering.

In order to investigate the anisotropy of the LI IDPs
even further, we write k in spherical coordinates, keeping
ik} = 0.07 fixed, and vary the polar and azimuth angles in
increments of 5°. Figure 4 shows such an angular depend-
ence of the LT IDPs in the x-p plane for scattering o

= (0.5,0.5,0.5). The contribution of the jower/slow trans-
verse phonon modes {not shown in the figure) never exceed-
edan IDPof 0.1 iev/ A. The upper T A mode increases from
Jupto 1.3eV/: A and the upper TO mode reaches a maxi-
mum of 0.7 eV/A. Only the LO mode shows a strong anisot-

...... T o S At S
3 initiai point: k= QO‘?(cosqp,smgp 8); ;
£ Lessae
& efcaverncle |
:} =:§ Eﬁgasﬂﬂegsussusnnznﬁﬂ
o
D 94° = LA e L0 e 1
S " :
- e TAt  &TO0u . o 7
e
E 00900320 0099°°q>
1{0ee, s? °
£ *t0s000¢° : 2
o AAAAAAAQAAA: Saag,
AAAAAA&AAAAAA&AAA Tt T
PSS T S S U FRNVES AN S0 T S W NN IO ST ST VO S VA S S Y S0 S WAVAN VU SN B
0° 45° 20¢ 135° 18¢°
¥

FIG. 4. Anisotropy of intervailey scatiering: Deformation potentials for
IVS from a point in the x-p plane of the BZ zone to the L point. Only the LO
mode shows a strong anisotropy. The slow TA and lower TO modes give a
very small contribution and are not displayed.
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ropy, and the LA IDP stays approximately constant at about
2.2eV/A.

In a similar study of anisotropy for the X point, we keep
jk| fixed at .09, which corresponds to the onset of I'X scat-
tering. The lower TA and TO modes stay relatively unim-
portant and never exceed an IDP of 0.6 eV/A. The LA
mode also gives very low values (up to 0.9 eV/ A), as can be
expected from symmetry considerations. The dominant con-
tributions come from the fast TA mode (IDP of 0-3.0
eV/A),the LO mode (1.9-3.6eV/A), which is the one most
favored by symmetry, and the upper TO mode (0-1.9
eV/A). Figure 5 shows the anisotropy of ['X scattering in
the xp plane for scattering to X = (1,0,0). Only one haif of
the plane is shown (Kramers degeneracy assumed).

This study shows that the intervalley deformation po-
tentials display a considerable dependence on the wave vec-
tor of the intervalley phonon, but change smoothly over the
Brillouin zone. Therefore, Conwell’s formula’ will not be a
good approximation. A linear interpolation and integration
(e.g., with the tetrahedron method) is needed for an accu-
rate estimate of intervalley scattering times. A mesh of 89
points in the irreducible wedge of the BZ (with 8 intervals
along T'X) will be too coarse in some cases, but one of 505
points (16 intervals along I'X) should always be sufficient.

Y. THE INTERVALLEY PHONON SPECTRAL FUNCTION

In order to find the average intervalley scattering time
{r) for an electron at a given k point (not the same for all
wave vectors K in a given valley!) to a different valley, one
has to integrate Bq. {1} over all possible final states and sum
up the contributions of all six phonon modes including the
absorption and emission terms. The integration volume has
to be chosen very carefully so as to include all final states in
the desired valley, but to exclude intravalley and other inter-
valley scattering processes. Two special cases (initial k
points L and X) will be discussed below.

In order to separate the temperature dependent and in-
dependent parts of this integral, we introduce the dimension-
less intervalley phonon spectral function 7

d3q dry
B{k,(}) = e
£EED if 87 aN,,

80— Q) (18)

B e o IS B e B e E
L initial point: k=0.0%{cosg,sing,0) , e
‘B
g 3 AN ¢0°e°°°o e
\ 'oe L] QO 9c
> = s hd & Tat Qg =
> o @ PR
e,a ‘.° <+
g 2}t e (O € L °? &
[] ¢ s & ﬁ
- L @ AAA‘AAXZAAAAA‘A ®
- LA La s 1
= e & 4 TOu Lae
7 ir 5,% e
a 28 = ‘%
L gad
=g LR
§¢1_1T?En;u?????j??aﬁn-ulﬂ‘ffn;g,.L&
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FIG. 5. As Fig. 4, but for the X point.
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which corresponds to the density of phonon states weighted
with the relevant intervalley deformation potential and the
density of final electron states. If we neglect the small
phonon energy term in the argument of the § function in Eq.
(13), the intervalley phonon spectral function is the same
for both absorption and emission processes. Then the inte-
grand in Eq. (18) is the same as in Refs. 70 and 31, but the
volume of integration in g-space has been constrained. The
factor 7 in Eq. (16) of Ref. 70 is a misprint and should be
delected. We can write the averaged intervalley scattering
time as a function of lattice temperature 7" as

i 20 )
= | aaeaey @+, a9
where N, is the Bose~Einstein factor for the phonon energy
1. Both emission and absorption processes are included
{factor of 2 in front of the integral stgn }. The smail tempera-
ture dependence of the electron and phonon energies have
been neglected in this approximation.

In is obvigus that Eq. (19) is substantially different
from the isotropic approximation of Ref. 59. It does not con-
tain a deusity of states mass as the integration is carried out
numerically. If the intervalley phonon spectral function can
be written as a 6 function,

PBXK,Q) = m#/ (o0 )e(E D2 8( — O0), (20)
with an effective deformation potential D¢, crystal density
p, an electronic density of states g(&, ) =N Vm\/'Zfrﬂi‘:/
(27°%), and an effective phonon energy (1., then the con-
stant terms can be taken out of the integral and the interval-
ley scattering time reduces to Conwell’s approximation”® :

1 _ 2 g
(1)) P«

where N,z is the Bose-Einstein function with the argument
gzcﬂ' .

28BN Ny +1), (21}

Vi. NUMERICAL PROCEDURE AND RESULTS

We have applied the theory explained above to calculate
the intervalley phonon spectral function and the average re-
turn time for an electron at the L point to the I valley. The
integration in Eq. (18) has to be performed over a spherical
shell with a minimum radius of 0.2(27/a) (to exclude intra-
valley scattering at L) and a maximum radius of

(3/2)%(27/a) to exclude L-L intervalley scattering. In the
actual calculation with the tetrahedron method, the tetrahe-
dra contributing to L-T" scattering were chosen by inspec-
tion. We have also calculated the lifetime for an electron at
the X point (X}, which can scatter to the [" valiey or one of
the four L valleys. Intravalley scattering at X and scattering
to other X valleys was excluded. The electron states were
calculated with empirical local pseudopotentials from Wal-
ter and Cohen®® and a cutoff of 5-6 Ry, corresponding to
59-89 plane waves. For the phonons, a {0-parameter shell
model*® was used. Other pseudopotential form factors and
phonon models gave similar results.

In order to calculate the intervalley phonon spectral
function, one has to perform a summation over a part of the
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FIG. 6. Temperature-independent, dimensionless intervalley phonon spec-
tral function g"B() for the lifetime of an electron at the (a) £ point and
{b) X point. The abscissa is the energy of the intervalley phonon. This spec-
tral function has to be multiplied with the Bose~Einstein factor and inte-
grated over all phonon energies in order to obtain the lifetimes of the elec-
troms as a function of temperature.

Brillouin zone with two § functions. Such a summation is
constrained to the intersection of two different constant-en-
ergy surfaces, one of which corresponds to electronic energy
differences and the other to phonon energies. Allen” has
generalized the tetrahedron method to such doubly com-
strained summations. Simple analytic results have been ob-
tained by linearly interpolating the energies and matrix ele-
ments within a small tetrahedron. In the calculation, the
irreducible sth wedge of the BZ was divided into 1768 small
tetrahedra which correspond to a mesh of 505 k points in the
irreducible wedge (16 intervals along T'X).

Figure 6(2) shows the intervalley spectral function for
the return of an electron from the L point to the I valley. It
can be seen that three phonons contribute to LI scattering:
the TA phonon ({} = 8§ meV), the LA phonon {25 meV),
and the LO phonon (30 meV). The contribution of the TO
phonon {32 meV) is negligible [ multiplied by 1000 in Fig.
6(a)}. This spectral function has to be integrated over all
phonon energies {see Eg. (19)]. We obtain a return time of
6.6 1 1 ps at low temperatures and 2.2 + 0.5 ps at 300K, in
very good agreement with the results of Shah'® (2 ps at 300
K) and Alfano® (2.7 ps). Figure 7(a) shows the LT return
time as a function of temperature.

We have also calculated the lifetime of an electron at the
X, minimum in GaAs. Because of the higher density of states
at the L points and the large defoermation potentials for XL
scattering,” electrons at X will mostly scatter to the L val-
leys (by emitting or abscrbing an L phonon) rather than to
the I" valley (with an X phonon). In the L valleys they will
rapidly relax to the minimum at or near L. From there they
will finally scatter back to the I' valley. The direct return
from X tothe T valley is also possible, but less probable. The

e T — e e
6+ Gahs: L -I' GaAs: X -T,L 7 04
L.
o 0.3
G 4[‘
- 1 0.2
2r a) C.i
ot i L i . i i A " i i
[« 100 200 3060 g 160 200 300

T (K) T (K}

FIG. 7. Lifetimes (return times) of electrons at the (2} L and (b) X points
as a function of temperature 7, calculated from the pseudopotential form
factors of Ref. 58 (with a cutoff of 6 Ry) and the shell model parameters of
Ref. 45,

intervalley spectral function for an electron at X is shown in
Fig. 6(b}. The peaks can be identified with different phonon
modes (see Table II1). The contributions of the L phonons
are generally larger than those of the X phonons as discussed
above, with the exception of the LA(L) phonon that has a
very small intervalley deformation potential.>® We obtain a
lifetime of 405 + 90 fs (128 + 20fs) at I3 K (300K from
the integrations, which is somewhat below the results of the
recent infrared pump-and-probe experiment of Wang ez
@l (700 + 500 fs), but in good agreement with the Monte
Carlo simulations of Kahn er al.”” The intervalley scattering
time as a function of temperature is given in Fig. 7(b). The
error for our calculation is much larger for the X point than
for the L point, because our pseudopotential model for the
conduction-band states is less reliable for higher energies.

Y. CONCLUSION

We have applied the “rigid-pseudoion” formalism to the
calculation of intervalley deformation potentials for elec-
trons in GaAs and other compound semiconductors, We
have shown that the deformation potentials show a strong k
dependence. Transverse phonons that are forbidden for scat-
tering processes between high-symmetry points become al-
lowed for the energy-conserving transitions observed in ex-
periments. Especially the fast transverse acocustic mode
should be considered when modeling hot-carrier experi-
ments. In electrical measurements, where the applied elec-
tric field breaks the cubic symmetry, the anisotropy of the
intervalley deformation potentials may become important,
as the population of valieys parallel or perpendicular to the
field will have different occupations.

Because of the k dependence of the deformation poten-
tials, Conwell’s scattering formalism is not a good approxi-

TABLE 1. Intervalley phonons and their energies (from the 10-parameter valence overlap shell model of Ref. 46) for the spectral function of an electron at

the X point

Phonon TAL) TA(X) LACL) LA(X) LOX) 1LOL) TOX) TO(L)
Energy (meV) 8.1 9.6 25 27 29 30 31.1 31.7
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mation to calculate intervalley scattering times. A numerical
integration over the Brillouin zone (inciuding details of the
band structure and k-dependent matrix elements) should be
performed, for example with the tetrahedron method. We
have obtained an LT return timeof 6.6 psat 10K (2.2 psat
300 K) for GaAs. The lifetime of an electron at X, was found
to be 400 fs at 10 X (130 fs at 300 K ). Both numbers are in
reasonable agreement with time-resolved luminescence and
pump-and-probe experiments and Monte Carlo simulations
with parameters obtained from an analysis of velocity-field
curves., Forther calculations of I'L and I'X scattering times
in comparison with recent hot-electron luminescence mea-
surements’*'*2! will be presented in a forthcoming publica-
tion.®

It is difficult to apply the method to calculate scattering
times for alloys (like AlGaAs) because the phonons are lo-
calized and k is no longer a good quantum number. A calcu-
lation for quantum wells or superlattices would require 2
supercell approach, which is very time consuming, but could
be done in principle.

The method we have described is very fast and relatively
easy to use. There are some disadvantages, however: the
phonon states are calculated from parametrized models that
are only heuristic fits to neutron scattering data and may not
describe the phonon polarization vectors very well. 4 initic
phonon calculations, on the other hand, are very time con-
suming or can only be used for special points, or both, and
may not give correct phonon eigenvectors either. Another
problem is the use of empirical pseudopotentials that may
not give a good description of the conduction-band struc-
ture,® but even most first-principles band-structure calcula-
tions (like the self-comsistent pseudopotential method or
LMTQO) have to be adjusted in order to yield the correct
band gap and dispersion of the conduction-band states. Nev-
ertheless a first-principles calculation of intervailey defor-
mation potentials should be performed at high-symmetry
peoints in order to check the reliability of the “rigid-pseu-
dofon” method.
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